RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2015-18] B.A./B.Sc. FOURTH SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017

Date : 16/03/2017

COMPUTER SCIENCE (General) Paper : IV

Time : 12 noon – 1 pm

Full Marks : 25

[Use a separate Answer Book for each group]

<u>Group – A</u>

An	swer	r <u>any one</u> question from <u>Question Nos. 1 & 2</u> :	[1×2·5]	
1.	a)	Differentiate between protocol and standard.	[1.5]	
	b)	Define : Peer-to-peer process.	[1]	
2.	a)	Differentiate between MAC address, IP address and port address.	[1.5]	
	b)	Write down one practical example of mesh topology.	[1]	
An	swer	r <u>any one</u> question from <u>Question Nos. 3 & 4</u> :	[1×10]	
3.	a)	a) An organization is granted the block $211 \cdot 17 \cdot 180 \cdot 0/24$. The administrator wants t subnets.		
		i) Find the subnet mask.		
		ii) Find the number of addressess in each subnet.		
		iii) Find the first and last addresses in subnet-1. iv) Find the first and last addresses in subnet-3? $[1+1+(1+$	1)+(1+1)	
	b)	What is the advantage of using bridge as a networking device?	[2]	
	c)	Why IP address is called 'universal'?	[2]	
4.	a)	Explain the basic routing process by showing the routing table of a router. Also explain ho packet is forwarded through an interface of that router	w a [4+2]	
	b)	Show the original unabbreviated from of the following address. 0 : 234 :: 3	[2]	
	c)	'190.16.42.0 can not be the beginning address of a block containing 1024 addresses' —Justif	y. [2]	
		<u>Group – B</u>		
An	swer	r <u>any one</u> question from <u>Question Nos. 5 & 6</u> :	[1×5]	
5.	a)	Prove that "Every graph with n vertices and k edges has at least $(n-k)$ components".	[2.5]	
	b)	Prove that "Every closed odd walk contains an odd cycle".	[2.5]	
6.	a)	Prove that "Every tree has a center consisting of either one point or two adjacent points".	[2.5]	
	b)	Prove that "Graph G is acyclic and if any two adjacent points of G are joined by a line X, t (G+X) has exactly one cycle".	hen [2·5]	
An	swer	r <u>any one</u> question from <u>Question Nos. 7 & 8</u> :	[1×7·5]	
7.	a)	Prove that "A simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k-1)}{2}$	-1)	
		edges".	[4]	
	b)	Prove that "A connected graph G is an Euler graph iff it can be decomposed into circuits".	[2.5]	
	c)	What is fusion?	[1]	

b)	Find out the weights of the points of the above graph.	[1.5]
c)	State the condition(s) to decompose a graph G into two subgraphs g_1 and g_2 .	[1]
d)	How many binary trees can be constructed from n vertices?	[1]
e)	Justify the statement : "Walk can't be Euler line".	[2]

_____ × _____

[1+0.5+0.5]